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We obtain a fundamental solution of an unsteady transport equation in solid geometry. This
solution can, subsequently be used to obtain the field characteristics when the source
function is not symmetric (solution of the problem when the mource is arbitrary can be ob-
tained by convolution of the source function with the given basic solution).

It should be noted that the considerable amount of attention given to the transport
equation stems from its importance in the fields of the theoretical .atmospheric-: and
hydro-optics and in the problems of neutron diffusion and gamma radiation; however, the
overwhelming majority of investigators stop at the problems where the required field (or
the particle distribution density) possesses a plane, cyllindrical or spherical symmetry
(see e.g. [1 to 3]).

We shall investigate the stated problem using the terminology pertaining to the diffusion
of particles in a scattering medium. The following notation shall be used: ¢ is time;

@ (|0o] = 1) is the unit direction vector of the emitted particles; X and @ (@] = 1)
are the spatial and angular arguments of the required particle distribution density / (s, X, w);
v is the velocity of the particles; A is the scattering cross section; 8 is the total scattering
cross section; ¥ (cos @) is the scattering coefficient expressed in the terms of the cosine
of the scattering angle a; {} denotes the surface of a unit sphere; X - ¥ is the scalar product
of X and ¥ and the step function is determined by the condition

0(2) =1, 2>0; 8(z) =0, z<0
The following restrictions are made: we assume that all physical parsmeters (5, S
and the scattering coefficients) are independent of the particle velocity, that the scattering
medium is homogeneous, isotropic and infinite (absence of the boundaries), that the scat-
tering coefficient y (cos a) cam be expanded into a finite series in the Legendre polynomials

N
7(cosa) = 2 b Py (cosa), by=1 (1)
l==0

Under these assumptions we find, that to obtain the basic solution of an unsteady
transport equation in solid geometry, we must solve the following equation for the particle
distribation density I (¢, x, &)):

1 o7 h ’ ' ’
— o +m-gradI+BI=Z;ST(0°‘DlI(f. X, o')do’ +
Q

1 ‘
+ = 8(£)3(x) 8 (@ — ) 2
Taking into account the simple connection existing between the baaic solation of
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our equation and the basic solution of the corresponding Cauchy’s problem (basic solation
of our equation corresponds to the basic solution of the Canchy’s problem for £> 0, see
[4]), we can express the problem defined by (2) as a homogeneous transport equation

’h ’ ’ r
-}gé+.m-grad1+w=@;gﬂm-w)ut. X, 0)do (3)

with initia]l conditions
I 1f=0 =46 (X) 8 ((!) — (00) (4}

To solve (3) under initial condition (4) we shall expand &8 (x) in [4] into plane waves,
thus reducing the problem 1o one containing a single spatial dimension. We know [4], that
in a three-dimensional space we have

3(x) = — %55‘” (x-0')do’ (5)
Q

where 5@) denotes a second order derivative of a one-dimensional S-function with respect
to its argument.

Let us introduce a coordinate system with the origin at X = 0 and the x- axis per-
pendicular to the plane (X, @") =0 and let the direction of collimation & in this coordinate
system be defined by a polar angle § counted from the positive direction of the x-axis and
by the azimuthal angle @ in the plane (X, @) =0,

In addition, let us put yt = cos 6.

Taking into account the linearity of (3) and the relation (5), we shall first consider a
formal plane source, whose particle distribution fanction i/ (¢, x, @) satisfies Eq.

B SRR IR =-4%§7(m-m’>¢<t, z, 0')do’ (6)

with the initial condition
P 1= = 6@ (2)d (0 — @) = 6@ (2) & (p — po) 8 (¢ — @) (7

Obviously, the required magnitude / (¢, X, @) is related to the fanction
‘P (ts Z, (t)) = ‘P thus (t’ ﬁ!, !’l'! !"'07 Q, (PO)

It %, 0)=— 53 Sﬂv(t. ZT=x0", p=0-0', liy =0p-0’, 9, )do’ (8)
Q

which, together with (5), describes the superposition of fields of the plane sources
randomly orientated and emitting the particles in the direction aw,.

In view of the singular character of the initial condition (7), we must seek the solution
of (6) in the class of generalized functions. For notational brevity, we shall not distinguish
between the generalized (continuous linear functionals in the space of infinitely differ-
entiable finite functions) and the ordinary functions. Moreover, to simplify the notation
further we shall, when referring to the arguments of the generalized functions, use the term
‘point’ with the relevant expression for the argument instead of the term ‘*neighborhood’
requiring a more complicated expression for the argument.

To solve the Eq. (6) we shall expand the particle distribution density in the terms of
the number of scattering collisions undergone by esch particle. This method was given in
[5] for the case of a plane, isotropic source. Thus we pat 9

x ~Bot n
v,z “)) = ”§0 ‘bn(t, z, (t)), P (¢, =, 0) = %WQ;{‘)" Fn'(n» (’))’ =
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Here , denote the terms (in the physical sense) in the expression for the particle
distribution density , corresponding to the particles undergoing exactly n collisions
over the period [0, ¢].

Inserting (9) into (6) we obtain, for the unknown function F,, the following set of re-
current relations

(n—m) 52 "F° = 3F,

(n—3) Fot (p—m) e = L §r(m-m'>ﬁn.1<n,m'>ém' m>1  (10)

Initial conditions satisfying the function F,, can be found by obtaining Fo together
with a recurrence relation between F, and F,_,. For this purpose we shall use the Green’s
function of (6). whose right hand side will be a known function of the source

G, t', z, 2)=ePU QU —t) S (x—2' —v (t—1)p) (11
Using the initial particle distribution as a source we obtain, from

L2 B = 80 () 8.(8) 8 (1 — o) & (9—0)

the distribution density of the particles passed without collision

Yo = 8@ (2 — o) S (1 — po) 8 (¢ — @) et (12)
which, together with (9), yields
Fo =100 —m)0 (n—pyd (@ —q) (13)

Assuming now that for n > 1 the source function has the form

fult, z, co)--"”"""sfr(m ') P (8, 2, @) doo’

we find, using the Green’s function (12), the relation between i, and i/, _,
O? o0
Yoltz0) = § dt' | G, ¥, 2, 0)1,(t, 2 0) = (14)
-0 —oa

21 5ot S B(t')0(t—1t')ebot’ dt’ STmm)wn—l(t z—v(t—1t)p, o)de’

—r0

=1
which, together with (9), yields

F,(n, 0) = —— zn—a St’"“‘*B(t 8 (t—t)dt’ Sy(m o) X

Fpy % (:——{Z—*——”“ w)de’, (@31 (15)

Formulas (12) and (14) will now show that, whent + 0, ¢r +0 if n> 1. Thus the
quentity 7, should satisfy the initfal condition (7), in accordance with (9).

Let us now turn our atteation to solving Egs. (10). In view of the singularity of these
equations, their solutions F,, should be obtained as linear combinations of the particular
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solutions Fn *which correspond to integrations around the singularity when 7=y in the
upper and lower semiplane of the complex variable 7} respectively (see [51). The first
Eq. of {10) has two, linearly independent solutions

s B (B~ o) B (9 — Po)
Fot =211$0 P‘(pf‘fn;(q:e)s = (16)

which can be uniquely combined to yield
i -
Fo=—(Fy"— Fy7) (17)

satisfying the condition {13).

Let us find the form of the combination of F ni defining F_ for n > 1. We shall consider
the cases 7> 1 and 77 <yt separately*. Let us introduce the symbol o = sign {n - p).
Going, in (10), around the singularity, we obtain its two lineerly independent solutions

Fot(n, @) = - lim (—n F ie)" x
n s

dn’ , . )
x“ (uwn'xza)"ﬂﬂr(“"m)pﬂ—ji(ﬂ»m)dw +cn*} (n>1)  (18)

ag

where ¢, *is a constant of integration and G, is the Jower limit of integration chosen in
some definite manner,

From (16) it follows that as || -+ oo, we have Fo¥ =0 (|n|=3) uiformly in 0 = Q
and the function Fo¥ is enalytic in 1) everywhere for 7 # }; thus when n = 1, we can put
in (18) g, = g*o0. Funther, from (18) we find that when 07+ %, we have F;* = O (|n|7®);
uniformly in®@ € ; therefore we can put ar =g+ = for n = 2, Using now the formula (18)
the required number of times, we find that we can assume g, = 0-00, foramyn>1,
since for on » «, we have

Fot =0 (n™) (19)
uniformly in @& Q.
Replacing now in (18) the varisble of integration by

' =tp—n)/@—1)

we obtain

oo

Fox(n, m):w’j‘_ 5 ) )8t —1) dt'fq’(m'-m) x (20)
a

—0oa

N * x""'?"(""’t’)fl’ 7 + . . ~
X Fry (“‘"T*— ® )ﬂ’m + %%*}_ﬂ(p~n¥w)” f az

Comparing (15) and (20) and taking into account (17) we find, that when ¢, ¥ = 0, then

the functions F_ for (n > 1) can be expressed in terms of pn*uuing the follow'i'ng relation
analogous to (h:

* The case 9} = 51 is excluded, since the generalized function has no values st the separate
points (see [4])

.
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. In the following we shall use the relations (21), assuming that in (18) and (20}
e *=0,

Having found the required anxilliary relations, we shall retum to our main problem i.e.
to find F, * from (10). Let us introduce the differential operator D =d(. . .)/dn defining its

positive powers by D®=I (unit operator) and D* = ¢*(..-)/ on® (k = 1, 2,...). More-
over, we shall denote by D—! and D=2 a single and double integration respectively, in
the limits o *o0 to 7.

Going in (10) around the singularity and applying the operator D=3 to both sides of
this equation, we obtain

(p—nFie) D"F,* = -[g‘—g v (®@-0)D"*F,5 (1, o) do’ n>=1) (22)
8

Dividing now both parts of (22) by (b — ntie) passing to the limit as €+ 4 0 and
using the relation (1) together with the addition theorem for the Legendre polynomials, we
obtain

N
n-2 +
D™*F, —nsl_l'lilop n¢w§21+1 Z Yim (0) X
x { Vin@) D" Faf(n, 0)do’  (n>1) (23)
Q0

where the functions Y;m () = Yim (}1, ®) represent the spherical harmonics and
YI (@) their complex conjugate.

in the following we shall employ the vector and matrix notation; 11X ; will denote the
{-th component of the vector X, while HAH wiil denote an element of the matrix 4.
Subscripts [, { and & will start with the num ’ﬁer [m| < N. We shall introduce (N ~ |m| + 1)-
componont vectors O , (1) and Y, (@) and square (N ~ !ml + 1)=th order matrices

(17) and Bm:

I|<Dm.n(n)llz=§?(m')D""“Fn=t (M, @)do’, |m|SISN, n>0 (24)

Yn(@h=Yn@), [m<ISN (25)
[ B (M) = lim §Y‘”‘ ﬁ”fi_y,’;’ﬁc(?f W ml<i, k<N (26)

b
IBmloe = 51 O 1mI<L AN 8u=0 (ik), du=1 (=h (27)

Let us multiply (23) by ¥ (@) and integrate the result over @ = (). Then, using
the notation given ebove, we og‘ttin the following vector equation:

Qm.j,:; == nB R id)mj,:._l, n>1 (28)

The recurrence formull (28) enablea us to express all vectors ‘Dm n (M) forn>,
in terms of the vector M 0(1])

Let us now rewrite Formula (23) as follows

o B— n:er 2‘ Z 2g+1 Y im (@) [ ®Om 51t =

me= N I=|m}

Dr2p £ —n hm
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N
=n lim —___—1——-— Z BmYm((l))’(Dm'ﬁ_l, n > 1
m=—-N

This, together with (28), will yield

D™*F,* =nl lim

N
Mi—ﬁ Z BmYm(m)'(BmRmi(ﬂ))n_lmm?(:)(n)v n>1
€ m=—N

To find F"t from (30), we must determine their boundary properties for n > 3, From
(19) it follows, that

lim Sfr((o-m')Fni M, 0)de' =0, a>1 (31)

Sn—Co b

Replacing in (10) F, with pn*, differentiating the obtained relations s times with
respect to 7) for eachn> 4 (s =0, 1, ..., n—4) and taking (19) and (31) into account, we
obtain 5
lim —F,*=0, »n>3, s=01,...,n—3 (32)
aN—»00 61]

We shall show that the functions " Rmi ") ":k and "mm.to () ﬂl where the signs
denote, reapectively,the limit values from above and from below on the real axis of the
complex variable 7, can be analytically continued over the whole complex n-plane with a
cut (-1, 1]. The definition (26) of the matrix R, * () implies, that

1
Rptly=lim | 2@ mn =
| Bm loe ;-.+o_31P'—fl:Fw’ Imn =0
where P (i) denotes a certain polynomial. From this we can infer, using the general pro-
perties of the Cauchy’s integral, that ~|=|li‘mt (17)“”‘ taken as a function of the complex
variable 7 is analytic for 7 € [—1, 1] ; it can also be shown, that the points n=1%1
are its branch points. The matrix R, (n) given by

| Ren () o = KSY‘L“::’_‘_L;‘;L"” do’,  |mI<i, k<N

for an arbitrary complex 7 on the plane with a cut [~ 1, 1], will represent a uniformized
value of the matrices R, 1(n) obtained as the limit values from above and from below on
the real axis of the variable 7.
Components of the vector (L) (1)) are found from Formulas (16) and (24)
Y 1 1
D * = e i - —_
u m.o("l)"l P Ylm(mo),l.lf:ollo—ﬂ:FiB’ Im’fl—O

and the uniformized value of the vectors (D,ﬁo (m) for any 1 £ o is given in this case

by

1 1
[@mo M i = 5 Y i (00) o

Since py & [—1, 1], then ||® o) ||; is analytic for n & [—1, 1].
Taking the analytic properties of [{R_(n)||;; and ”q’m,o(fl)”l into account we find,
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that Fq. (30) with the boundary conditions given by (32) has, for Im 1) = 0, the following
solution
(33)

— ) dz N -
For=nt lim g § 0208 S f Y (@)-(BR (2) Do (2),
Co™ m=—N n>1
=
where the integration around the contour C_* begins either at z = o when o> 0, or at
z = — oo when 0 <0 and, depending on the sign of the function F,_ * passes, respectively,
along the line Im z = i€ to reach the point z= = 1 o j¢, ¢ > 0, le] = 0.
Validity of the formula (33) for n> 3 follows from the Cauchy formula for computing
an n-tuple primitive function, while for n = 1, 2 it follows from the fact that when
A+n (? =1, 2, ...), then the generalized function z*J (x) / I' (A -4-1) 1is equivalent
n—1) (. (x) while the generalized function 2* 6 (—x) / F (?\ + 1) is equivalent
to (-—1)@D3M-1 (1) (see e.g.14]).
Formulas (9), (21) and (33) yield the particle distribution density i (¢, x, @) for the
formal plane source {(7)

\P(t, L, (ﬂ):’tp(t, Z, W, o, Q, (ﬁ‘O):‘Po—{—‘h"f“'le‘*‘ (34}

h3e BUtS

Z‘ BaY 1 (0)- (BB (2)726"™ TP mEn @, 4 (2)
c m=—

Here the contour of integration C begins and ends at the points z = x/vt, situated,
respectively, on the lower and upper boundary of the cut [—1, 1], passes the cut on the
right when ¢ > 0 and on the left when o <0 (actually the cut may be passed on either side
for any o, since the expression under the integral sign in (34) is analytic outside the cut
and its modulus decreases faster than ]zl"“ when |zf» o). For the quantities ¢, ¢,
and ¢/, in (34) we have the following expressions:

Yo = eFVO@ (2 — pot) & (b — o) 8.(9 — ¢y) (35)
¥, = lim he™Pvt dz (n—z)* N
1 )T D S 7 2 BnYm(@)®n,(2)  (36)
m=—N

. h2g=Bvt dz (n— z)* N
b, = lim ~uut[‘(k+1)5 ( D BuYn(0) BaRy(2)®m o(z) (37)

A—— p—2z
m=—N

The required fundamental solution / (¢, X, @) of a unsteady transport equation in solid
geometry is now obtained by putting i/ (¢, x, @) given by (34) to (37), into (8).

In conclusion we note, that the given method can be applied, after slight formal
modifications, to the problems of any spatial dimensionality, This statement is justified
by the existence of a known expansion of the S-function in terms of the plane waves, in
the space of any dimensionality (see e.g. [4]).
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