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TRANSPORT 

We obtain a fundanmntal eolntion of an nneteady transport eqnation in molid geometry. Thie 
eolodon can, enbeequently be need to obtain the field characterietice when the eonrce 
fnnction ie not symmetric (aolation of the problem when the eource ie arbitrary can be ob- 
tained by convolation of the eource fnnction with the given baeic eolation). 

It ehoold be noted that the coneiderable amount of attention given to the trqnmport 
eqnation eteme from ite importance in the ffelde of the theoretical .atmoepheric- and 
hydro-optica and in the problema of neutron diffnaion and gamma radiatfon; however, the 
overwhelming majority of inveetigatora mtop at the probleme where the reqnired field (or 
the per&la distribution dendty) posmemmes a plane, cyllindriaal or ephedcal eymmstry 
(see e.g. [ 1 to 31). 

We l hall investigate the etated problem neing the terminology pertaining to the diffneion 
of partialee in a eoattering medinm. The following notation ahall be need: t ie timq 
O, (&,I = 1) ie the nnit dimction vector of the emitted partiolee; x and o (101 = 1) 
are the spatial and angnlu ugnmente of the reqnired puticle dimtribntion den&y 1 (t, t, o)! 
v ie the velocity of the particle.; h ie the l cattedng croee eectiont /3 im the total ecattedng 
croee l ection; y (aoe U) im the ecattering coefficient expressed in the terme of tlm cmine 
of the rcatterfng angle a; n denotee the l nrfece of a anit l phere; x - Y is the l calu product 
of X and J and the l tep fnnotion is determined by the condition 

0(4=1, 5>0; e(5) =o, +<o 

The following reetrictione ue made: we &ke that all phydcal parmnetere (h, p 
and the l catterfng ooefffcientm) am fndep-dent of the pardcle velocity, that the scattering 
medfom ie homog-cone, ieotrepic and inffnlte (abeenae of the boondariee), that the scat- 
tering aeefffafent y (corn U) o- be expanded into a finite eedee in the Legendre polynomiale 

N 

r (cog a) = 2 b,P, (cos cc), blJ = 1 
1=-o 

(1) 

Under theee l uamptions we find, that te obtefn the baeic eolntion of an eneteady 
tmnepert eqedon in l olfd geometry, we mnet l olve the followfng eqaadon for the par&b 
dfetrfbatfon denefty I (t, x, & 

(2) 
Taking into l oaonnt the l imple canoedon exhtin~ between the basic mohtion of 
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oar cqnatfoa and ths bank aelntion of the oomeeponding Canchy’s Foblam (bade aolntion 
of out sqndon corrcaponde to the banio solution of the Canchy’e problem for t > 0, see 
[I]), WC can express the probIcm defined by (2) as a bomogencoacl transport cqaadon 

+g _t.o.gradI$ pr = ;Jr(wd)r(t, x, 0’)do’ (3) 
n 

with initial condidons 

I It4 = wP(~--oo~ (4) 

To trolvc (3) under initial oondition (4) we shall expand 8 (4 in [4] into plane waves, 
thus reducing the problem to one containing a single spatial dimension. We know (41, that 
in a thrcc-dimcnaional spaoe WC have 

where 8x1 denotes a second order derivative of e one-dimensional &unction with reapcct 
to ita argument. 

Let us introduce a ooordinatc aystcm with the origin at x LI: 0 and the r- axis per- 
pendicular to the plane (x, 0’) = 0 and let the direction of coll~ation P) in this coordinate 
system bc defined by a polar angle 8 counted fmm the positive direction of the ~-+-axie and 
by the azimutha angle rp in the plane (x, CU”) = 0. 

In addition, let ua put /J = cos 8. 
Taking into account the linearity of (3) and the relation (51, WC shall first consider a 

formal plane aoarcc, whoee particle distribution function $ (t, x, 6i) satisfies Eq. 

with the initial condition 

Ip It=0 = a(*) (2)8 (0 - 00) = cj@) (z) 8 (cl - k(J 8 (cp - cp()) (7) 

Obviously, the required magnitude f ft, X, d ia related to the function 

9 (t, 2, 0) = Ip thus (tl 2, 1L, l&t rp, Q) 

I(& x, 0) = - & J $(t, x=x*0’, ib=o*o’, l.t0=00*0’, ‘p, ‘po)rzo’ (8) 

n 

which, together with (51, describes the anpsrpoeition of fields of the plane sources 
randomly orientated and emitting the particles in the direction a. 

In view of the singular chractcr of the initial condition (71, WC must seek the eolntion 
of (6) in the class of generalized functions. For notational brevity, WC shall not distinguish 
between the gmcralizcd (continuous linear functionals in the space of infinitely diffcr- 
cntiablc finite functional and the ordinary functions. Moreover, to simplify the notation 
further we e&all, when referring to the arguments of the generalized functions, nee the term 
‘point’ with the rcicvont expression for the argument instead of the term ‘neighborhood’ 
requiring a more complicated cxprcnsion for the argument. 

To solvu the Eq. (6) we shall expand the particle d~at~bn~on daasity in the temur of 
the number of scattering collisions undcrgonc by eeoh partMa. Thie method was given in 
[5] for the caec of a plane, isotropic aourcc. Thus WC put (9) 
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Here +,, denote the terms (in the physical sense) in the expression for the particle 
dist~bntion density , 
over the period [O, t 4” 

corresponding to the particles undergoing exactly n collisions 
. 

Inserting (9) into (6) we obtain, for the unknown function F,, the following set of re- 
current relstions 

Initial conditions satisfying the function F, can be found by obtaining F0 together 
with a recurrence relation between F, and F,_t, For this purpose we shall use the Green’s 
function of (6). whose right hand side will be a known function of the source 

G (t, t’, z, s’) = e-@*(f-t’) e (t - t’) 6 (z - d - ?,I (t - t’) p) (11) 

Using the initial particle distribution as a source weobtain, from 

the distribution density of the particles passed without collision 

wo = a(*) fs - W) I? (F - PfJ) 6 (($7 - q,) e-get 

which, together with (9), yields 

Fo = IW (cl - 11) 6 (II - Po) 6 (cp - cp”) 

Assuming now that for nl 1 the source function has the form 

W) 

(13) 

we find, using the Green’s function (121, the relation between tin and $,_t 

m 0.3 

’ %(t, GO) = 
!I 

dt’ \ &‘G (t, t’, 5, z’) f,‘(t’, x1 o) = (14) \I --co --co 
“: 

=---- ;; e-$Wf !J_ 0(t’)9(t-t’)e@~f’dt’ y(co.a’)gn_l(t’,s-u(t-t’)y,o’)do’ 
s 

;2,,, 

which. together with (91, yields 

F,(rlS 0) = * j m* t’W(t’)8(t-t’)dt’~~(o.o’) x 

--W La: 

Fn-t x c .T - v (1 - f’) p 
vt’ 

, 63’ do’, (n&i) ! 
Formulas (12) and (14) will now show that, when t + 0, t&s -+ 0 if s2 1. Thus the 

quantity $o should satisfy the initial condition (71, in accordance with (9). 
Let on now turn our attention to solving Eqs. (10). In view of the singularity of these 

equations, their sohtions F, shoald be obtained as linear combinations of the particalar 
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aolntionaFa*whiah correspond to fntegratiana around the afngufarity when ‘f =p in the 
upper and lower se&&us of the complex varfable W respectfvefy (see [S] 1. The first 
Eq. of {X0) has two, linearly independent solutions 

ji’,-,* = lim s(P-PO)6(~-cPO) 
e-+0 (P - T ‘F 43 (16) 

which cau be uniquaIy combfned to yield 

Po = f (F,’ - K-J 

satisfies the condftion (13). 
Let us find the form of the combination of Fa 

the cases ? > p and 7 .<p separately+. 
* deffnfug Fa for n2 1. We shall consider 

Let us introduce the symbol u = sign fq _ @. 
Going, in (IO), around the singafarity, we obtafa its two linearly independent solutions 

wttere c 
1 
* is 8 ~o~~t@rtt of inW+ion and a0 is the lower limit of fntegrniioti chosen in 

some de inite manner. 
From (16) it follows that es /q[ +oo, we have F**-g ([@) uniformly in W E fz 

and the function Fe* is analytic in ~7 everywhers for W # p; thus when n = 1, we can put 
in fl81 o. s fl*m. Further, from (181 we find that when q+*bo* we have PI* = 0 (/q/-'); 
uniformly inO EK4; tkerefore we can put atr =a * - for n = 2. Using now the formula (181 
the reqaired number of times, we find that we caa assams ao = (T‘ 00, for say nz 1, 
since forcW-,m, we have 

FYl* = 0 (Irl I--“> 
uniformly in MS a. 

Replacing now in (18) the variable of integration by 

t#=t&t - rtY (Et - Tf’f 
we obtain 

(19) 

Comparing (15) and (20) and taking into account (171 WC find, that when c * = 0, then 
the fonctfona F for (n2 1) can be expressed in terms of F, 
analogous to (I!): 

*using the follow!ng relation 

l The case g = 
points (sac f4 4” 

is excluded, since the gencraliacd function has no values at the separate 
1. 
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In the fallowing we shall asc the rtfatfons (211, assnming that in (18) and (20) 

‘n 
190. 

Havfn fonnd the reqaired aurflliary relations, we shall retara to oar main problem i.e. 
to find F, P from (IO). Let as introduce the differential operator D = a(. . .)/a? defining its 
positive powers by DO= I (unit operator) and Dk = ak(. . a) / d$ (k = 1, a,...). More- 
over, we shall denote by D-l and DC2 a single and doable integration respectively, in 
the limits 0 -00 to 7. 

Going in (10) aroand the singularity and applying the operator Pm3 to both sides of 
this equation, we obtain 

Dividing now both parts of (22) by (p - @Fi&) passing to the Iimft as E + + 0 aad 
using the relation (1) together with the addition theorem for the Legendre polynomials, we 
obtain 

Dnm2F,* = n lim i . $A- Ii Yl?n (0) x e,+oP?rle I=0 21-l-f _I 

x 
s 

F,,,, (0’) .n-3F,,: (q, cd) dw’ P >, 1) (23) 
n 

whsrs the functions Fl;, (0) = Y1, (P, 9) re p resent the spherical harmonics and 
ylrn (0) their complex conjagate. 

in the following we shall employ the vector end matrix notation; IiX(if wfll deaote the 
t-th component of the vector X, whfla llAl/f will denote an elameat of the matrix A. 
Subscripts I,1 and k will start with the num er Irnl,< N. ‘k 
component vectors a& (q) 

ke shall introduce (N - in11 + l)- 

Rmf (7) and Bm: 
and Y,,,(a) and sqaare (IV - }m[ + I)-th order matrices 

n && =&8,,, fmldi, k<N; &k=O (ifk), i&=1 (izk) (27) 

Let IJS moldply (23) by Yl 
the notation given above, we a F 

(cu) and integrate the resalt over w SQ. Then, asing 
tdn the following vector eqaation: 

%& = nB,R,f%,f,ll, n>,l cm 

The recarrence formala (28) eaahlss na to express all vectors @$,,, (q) for n >, 1, 
in terms of the vector @$,o(q): 

@,a$ = nl (&&a* )*%n:o, 

Lat as now rewrite Formula (231 as follows 

N N 
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1 
= n lim 5 

c++o P---Tie -__N 
&J,(~)~~rn,:--t,,, n>i 

Thin,, together with (28). will yield 

To find F,* from (301, we must determine their boundary properties for n, 3. From 
(19) it followa, that 

lim 
\ 
‘r(o.o’)F,f (q, o’)do’ = 0, nS=i (39 09+w h 

Replaoing in (10) F, with F,*, differentiating the obtained relations s times with 

respect to q for each n> 4 (S = 0, 1, . . . . n-4) and taking (19) and (31) into account, we 
obtain 

lim EF,* = 0, 
on+c-2 a$ 

n&3, s=O,i,..., n-3 (32) 

We shall show that the fan&one II Kn* (rl) lllk and // @tn,f (q) 111 where the signs 

denote, respectively, the limit values. from above and from below on the real axis of the 
corn lex v&able 7, cau be analytically continued over the whole complex q-plane with a 
cut -1, I]. The definition (26) of the matrix R,*(v) implies, that P 

where P b) denotes a certain polynomial. From this we can infer, using the general pro- 
perties of the Canchy’s integral, that 11 IR,* (‘lqlik 
variable rj is analytic for Vj c [ -1, I] ; ‘t 

taken as a fanction of the complex 
1 can also be shown, that the points 7 - f 1 

are ite branch pointa. The matrfx R, (r)) giva by 

for an arbitrary complex 7 on the plane with a cut [- 1, 11, will represent a nniformized 
value of the matrices R, i(q) obtained aa the limit valuea from above and from below on 
the real aria of the variable q. 

Componenta of the vector a&, (q) are found from Formulaa (16) and (24) 

and the nniformi%ed value of the vectors @& (q) for any 7 f b is given in this case 
by 

ll~Tn,0(tl)lll = 

Since PO E l--1, 11, then ),I@ &) (11 ia analytic for q e 1-1, 11. 
Taking the analytic propertfem of?$,,(~)l\ik and IIQm,o(q)llf into account we find, 
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that Eq. (30) with the boundary conditions given by (32) has, for Im 77 = 0, the following 
solution 

(33) 

F,* =n! lim I (q- z)‘dz N 

A-+7+3 r (h + 1) w-z 
yJ %Knw*(~m~m (w-l~)m,O (z), 

CO 
f m=-N 

n>l 

where the integration around the contour C ’ begins either at z = ~0 when 0 > 0, or at 

z=- m when a < 0 and, depending on the %gn of the function F, * passes, respectively, 

along the line Im z = fiE to reach the point z = = q t i&, p > 0, 1~1 _.+O. 

Validity of the formula (33) for n 2 3 follows from the Cauchy formula for computing 
an n-tuple primitive function, while for n = 1, 2 it follows from the fact that when 

2, . ..). then the generalized function xx8 (x) / I‘ (h + 1) is equivalent 

(x). while the generalized function 

to ( --l)@+W-l) (5) (see e.g. 141). 

xi 8 (-x) / f (1 + 3) is equivalent 

Formulas (9). (21) and (33) yield the particle distribution density $ (t, r, O) for the 

formal plane source (7) 

B,,,Y,,, (61). (fZ,f?,(~))%~~~ (n-z)BmRm(z)~m,O (2) 

Here the contour of integration C begins and ends at the points E = x/vt, situated, 

respectively, on the lower and upper boundary of the cut [-I, 11, passes the cut on the 

right when a > 0 and on the left when ~7 < 0 (actually the cut may be passed on either side 

for any 0, since the expression under the integral si n in (34) is analytic outside the cut 

and its modulus decreases faster than 1x1-* when (E + m). For the quantities &, & P 
and 4, in (34) we have the following expressions: 

+I = lim 
&-$ut 

s 

d,_(q-z)‘. N 

A__-2 ni (~1t)~1’ (h + 1) p - 2 2 KnY7n (~)*%,o (2) (36) 
C VI=-N 

q2 = lim 
&-$ut 

h__-1 xiutr (h + 1) s 

dz(q-z)” N 

p - z z BrnY,(o).BrnRrn(z)~~,o(z) (37) 
c m=-N 

The required fundamental solution I (L, X, o) of a unsteady transport equation in solid 

geometry is now obtained by putting 4 (t, x, 01 given by (34) to (37), into (8). 

In conclusion we note, that the given method can be applied, after slight formal 

modifications, to the problems of any spatial dimensionality. This statement is justified 
by the existence of a known expansion of the &function in terms of the plane waves, in 

the space of any dimensionality (see e.g. [4] ). 
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